
Reactive Programming

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Introduction to RSocket - About Me

Sasa Velickovic
sasa.velickovic@endava.com

Design Authority in Transport & Logistics

Solution Architect

Distributed Systems and Integrations (Patterns)

Software Engineering Background

About Me

mailto:sasa.velickovic@endava.com

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Reactive Programming - Introduction

• Reactive Programming is a programming paradigm concerned with data

streams and the propagation of change

https://en.wikipedia.org/wiki/Reactive_programming

• Type of dataflow programming, traces back to 1970 and through the years

saw its primary usage in implementing user interfaces.

• With Reactive Programming it is possible to express static and dynamic data

streams.

• Functional Reactive Programming

Reactive Programming

IMPERATIVE

b = 1
c = 2
a = b + c
b = 10

print a : 3

REACTIVE

b = 1
c = 2
a -> b + c
b = 10

print a : 12

https://en.wikipedia.org/wiki/Reactive_programming

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Reactive Programming - Reactive Streams Specification

Reactive Streams is a Functional Reactive Programming model for

processing asynchronous data streams.

Back pressure - subscriber can use subscription object to specify

much it can consume

Concurrent agnostic – threading model is not imposed

Reactive Streams is an initiative to provide a standard for

asynchronous stream processing with non-blocking back pressure.

This encompasses efforts aimed at runtime environments as well as

network protocols.

https://www.reactive-streams.org/

https://github.com/reactive-streams

Included in Java 9 as part of core concurrent libraries

https://openjdk.java.net/jeps/266

Implementations: Akka Streams, Ratpack, Project Reactor,

ReactiveX, Vert.x

Reactive Streams Specification

https://www.reactive-streams.org/
https://github.com/reactive-streams
https://openjdk.java.net/jeps/266

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Application requirements have changed dramatically in

recent years

• High availability requirements 99.99%

• Milliseconds response times

• Big Data

Reactive Systems are :

• Responsive

• Resilient

• Elastic

• Message Driven

https://www.reactivemanifesto.org/

The Reactive Manifesto

5

Reactive Programming - Reactive Streams Specification

https://www.reactivemanifesto.org/

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Flavours of Reactive Programming

6

Reactive Programming - Reactive Streams Specification

PROMISE (C#)

public async Task<IEnumerable<User>> GetUsers()
{

return await _userService.GetUsers()
}

REACTIVE (JAVA)

public Flux<User> getUsers() {

return userService.getUsers();
}

public Mono<User> getUserById(String userId) {
return userService.getUserById(userId);

}

COROUTINES (KOTLIN)

fun getUsers(): Flow<User> = userService.getUsers()

suspend fun getUserById(id: String): User? = userService.getUserById(id)

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Reactive Programming - Project Reactor

Project Reactor

https://projectreactor.io/

https://projectreactor.io/

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Reactive Programming - Project Reactor

Project Reactor Flux

Flux - A Reactive Streams Publisher with rx operators that emits 0 to N

elements, and then completes (successfully or with an error).

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Reactive Programming - Project Reactor

Project Reactor Mono

Mono - A Reactive Streams Publisher with basic rx operators that emits at

most one item via the onNext signal then terminates with an onComplete

signal (successful Mono, with or without value), or only emits a single

onError signal (failed Mono).

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Reactive Programming - Project Reactor

Project Reactor Flux, Mono creation

Flux.create Mono.create

Flux.empty()
Mono.empty()

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Project Reactor Demo (in Spring Boot)

11

Reactive Programming - Project Reactor

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Reactive Programming - Project Reactor

• Nothing happens until you subscribe

• Assembly time

• Execution time

Assembly Time vs Execution time

Flux.range(1, 2)
.map(i -> 10 + i)
.map(i -> "value " + i)

.subscribe()

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

The Rx family of reactive libraries distinguishes two broad categories of reactive

sequences: hot and cold. This distinction mainly has to do with how the reactive

stream reacts to subscribers:

• A Cold sequence starts anew for each Subscriber, including at the source of

data. For example, if the source wraps an HTTP call, a new HTTP request is

made for each subscription.

• A Hot sequence does not start from scratch for each Subscriber. Rather, late

subscribers receive signals emitted after they subscribed. Note, however, that

some hot reactive streams can cache or replay the history of emissions totally

or partially. From a general perspective, a hot sequence can even emit when

 u (h “ h h f y u

 u ” u).

https://projectreactor.io/docs/core/release/reference/#reactor.hotCold

Cold and Hot Publisher

Cold Publisher

Hot Publisher

Reactive Programming - Project Reactor

https://projectreactor.io/docs/core/release/reference/#reactor.hotCold

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Reactor is concurrency-agnostic – execution model and where the execution

happens is determined by currently used Scheduler

Scheduler types:

• Schedulers.immediate() – no execution context, submitted task is directly

executed on the current thread

• Schedulers.single() – single, reusable thread

• Schedulers.boundedElastic() – worker pool suitable for I/O blocking work

• Schedulers.parallel() – fixed pool of workers tuned for parallel work (num of

workers == CPU cores)

Using publishOn and subscribeOn operators

• subscribeOn applies to the subscription process, when that backward chain is

constructed. As a consequence, no matter where you place the subscribeOn in

the chain, it always affects the context of the source emission

• publishOn applies in the same way as any other operator, in the middle of the

subscriber chain. It takes signals from upstream and replays them downstream

while executing the callback on a worker from the associated Scheduler.

Consequently, it affects where the subsequent operators execute

Schedulers // wrapping synchronous, blocking call
Mono blockingWrapper = Mono.fromCallable(() -> {

return /* make a remote synchronous call */
});
blockingWrapper = blockingWrapper.subscribeOn(Schedulers.boundedElastic());

Flux<String> flux = Flux
.range(1, 2)
.map(i -> 10 + i) // caller thread
.publishOn(Schedulers.parallel())
.map(i -> "value " + i); // thread from Parallel Scheduler

Flux<String> flux = Flux
.range(1, 2)
.map(i -> 10 + i) // thread from Parallel Scheduler
.subscribeOn(Schedulers.parallel())
.map(i -> "value " + i); // thread from Parallel Scheduler

Reactive Programming - Project Reactor

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Work Stealing

Source:https:/ /youtu.be/hfupnixznp4

• One operator combining data from separate data sources

(separate threads)

• Shared queue – thread sharing the queue offer data to it

• If there is already thread working, it will steal work offered from

other threads

Reactive Programming - Project Reactor

https://youtu.be/hfupnixznp4

REACTIVE PROGRAMMING / / © COPYRIGHT 2021 ENDAVA

Support contract for queue-fusion based optimizations on subscriptions.

• Synchronous sources which have fixed size and can emit their items in a pull

fashion, thus avoiding the request-accounting overhead in many cases.

• Asynchronous sources which can act as a queue and subscription at the same

time, saving on allocating another queue most of the time.

Operator Fusion

Reactive Programming - Project Reactor

Flux.range(1, 2)
.map(i -> 10 + i)
.map(i -> "value " + i)

Q & A

