MULTITHREADING

APPLICATI®N IN M®DERN APPLICATI®NS

NIK®LA PREMCEVSKI
FEBRUARY 2"°, 2016

TABLE ©@F CONTENTS

A DV AN T A G E S iiiiieiteerrrrrtiiriteeseeeeeesssssssssssssssssssesseessssssecsssnnns

R ~LI XAMPLES

£ S S N IS RS RN 9N |

INTRODUCTION

BACKGR®UND

Multithreading is a way of making computers do multiple things at once, but compared to technics
like time-slicing and similar, multithreading allows actual execution of multiple operations at the same
time. This is possible due to existance of multiple processor cores, or even processors inside one
machine. Multicore systems were introduced in the early 21* century, yet still not many applications
allow true usage of even two, and especially not three or more cores.

PRO®BLEMS

Being able to do more things at once requires either working with separate resources, or technics of
preventing so-called collisions between threads upon accessing the same resource. Both make
implementing multithreading into existing applications difficult, and the programmers often ask
themselves if it's worth it. Not always can you make more things at once, depending on the type of
data you're working with, and how and what you're working with it. Although still not very widely
used, it is a good thing to try and implement multithreading whenever possible.

ADVANTAGES

Main advantage of using multithreading is linear performance gain in term of execution time per
every processor core dedicated to the task — twice tbe cores, double the execution speed, and half the
execution time. Of course, although we say each core acts as a separate processing unit and that each
core increases the performance by 100%, it is not exactly true, as some resources are still shared across
the cores, like the registries, and the other resources of the computer, like the main memory, the hard-
drive etc. Only thing that increases with each core is the computational power of arithmetical and
logical operations. Because these two make up the most of every execution we usually say it's almost
100% faster per each core available.

APPLICATI®NS

Multithreading can and should be applied where, and whenever we see a need to speed up the
things a bit and there's not much to do regarding usual optimizations of code. Unless prevented by self-
recursion or any other obvious problems which make paralel calculations impossible, paralelization
could be possible, one way or the other.

Some things like array operations, matrix operations, or any type of calculation with little or no
connections between separate “objects” just screams for multithreading. Array and matrix elements are
stored inside their own cells and have no actual link among them, making it possible to manipulate
them without having to worry about data corruption or similar. As they are stored in separate memory
blocks, it is also possible to access them at the same time — as we know, computer's main memory
(RAM) can be accessed at any time, and theoretically, all the memory can be accessed at the same

time.
REAL-LIFE EXAMPLES

As we already said, arrays and matrices are a perfect candidate for paralelization, meaning if we
can transform a real-life scenario into an array/matrix scenario, it can be improved using

multithreading.

IMAGES

In digital computers, everything we see on the screen is actually composed of pixels, tiny dots on
the screen represented with three color components — Red, Green and Blue (RGB). To improve the
things a bit, a fourth component is also used in imagery, called tranparency, or more commonly —
Alpha (A). Therefore, images in computers are represented as a matrix or four components — RGBA.

All four components are actually a number which represents the amount of each component inside
the current pixel. The number usually ranges from 0 to 255, making it a perfect candidate of type
“byte”. This makes it easy to represent every pixel with 4 “byte” variables, sometimes simplified as a
single 32 bit (4B) “int” variable — highest byte representing R component, and lowest — A component.

Now that we understand how images are stored inside the computer, manipulating an image with
multiple threads is rather simple, we split the matrix into several sub-matrices and give each thread a
single sub-matrix to work on, depending on the task we wish to do. As every pixel is a separate
“object”, it's value can be modified regardless of other pixels, meaning no collisions will happen during
the manipulation.

	Introduction
	Background
	Problems
	Advantages

	Applications
	Real-Life Examples
	Images

